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Abstract. A joint Synchrony/Mean-Rate model of Auditory Speech Processing
(ASP) is described, and its application in speech technology is considered. As for
automatic segmentation and recognition, few examples are illustrated in which the
superiority of the ASP scheme over other methods is enphasized, especially
considering speech in adverse conditions.

1. Introduction.

Acoustic analysis front-end of almost all presently commercialized
Automatic Speech Recognition (ASR) systems is built using speech "prodution-based"
processing schemes. In other words, Short-Time Fourier Transform (STFT),
Cepstrum, and other related Speech Processing (SP) [1] schemes were all developed
strictly considering physical phenomena that characterise the speech waveform
obtained by the electrical transduction of the sound pressure wave. Moreover LPC
tecnique [2] and all its variants were developed directly by modelling the human
speech production mechanism. In the last years, almost all these analysis schemes
have been modified by incorporating, at least at a very general stage, various
perceptual-related phenomena. Linear prediction on a warped frequency scale [3],
STFT-derived auditory models [4], perceptually based linear predictive analysis of
speech [5],[6] are few simple examples of how human auditory perceptual behaviour
is now taken into account while designing new signal representation algorithms.
Furthermore, the most significant example of attempting to improve acoustic front-end
with perceptual related knowledges, is given by the Mel-frequency cepstrum analysis
of speech [7], which transforms the linear frequency domain into a logarithmic one
resembling that of human auditory sensation of tone height. In fact, Mel Frequency
Cepstrum Coefficients (MFCC) are almost universally used in the speech community
to build acoustic front-end for ASR systems.

All these speech processing schemes make use of the "short-time" analysis
framework [1]. Short segments of speech are isolated and processed as if they were
short segments from a sustained sound with fixed properties. In order to better track
dynamical changes of speech properties, these short segments which are called
analysis frames, overlap one another. This framework is based on the underlying
assumption that, due to human articulatory characteristics, the properties of the speech
signal change relatively slowly with time. Even if overlapped analysis windows are
used, important fine dynamic characteristics of speech signal are discarded. Just for
that reason, but without solving completely the problem of correctly taking into
account the dynamic properties of speech, "velocity"-type parameters (simple



differences among parameters of successive frames) and "acceleration"-type
parameters (differences of differences) [8] have been recently included in acoustic
front end of almost all ASR systems found on the market. The use of these temporal
changes in speech spectral representation (i.e. ∆MFCC, ∆∆MFCC) has given rise to
one of the greatest improvements in ASR systems. In some of the best ASR systems,
the incorporation of transitional information has reduced errors by as much as 50%.
[9], [10].

Moreover, in order to overcome the resolution limitation of the STFT (due to
the fact that once the analysis window has been chosen , the time frequency resolution
is fixed over the entire time-frequency plane, since the same window is used at all
frequencies), a new technique called Continuous Wavelet Transform (CWT),
characterized by the capability of implementing multiresolution analysis, has been
recently introduced [11]. With this new speech processing scheme, if the analysis is
viewed as a filter bank, the time resolution increases with the central frequency of the
analysis filters. In other word, different analysis windows are simultaneously
considered in order to more closely simulate the frequency response of the human
cochlea. As with the preceeding processing schemes, this new auditory-based
tecnique, even if it is surely more adequate than STFT analysis to represent a model of
human auditory speech processing, it is still based on a mathematical framework built
around a transformation of the speech waveform, from which it tries directly to
extrapolate a more realistic perceptual behaviour .

Cochlear transformations of speech signals result in an auditory neural firing
pattern significantly different from the spectral pattern obtained from the speech
waveform by using one of the above mentioned techniques. In other words, speech
spectral representations such as the spectrogram, a popular time-frequency-energy
representation of speech, or either the wavelet spectrogram, or scalogram, obtained
using the above described multiresolution analysis technique are quite different from
the true neurogram. In recent years, basilar membrane, inner cell and nerve fiber
behaviour have been extensively studied by auditory physiologists and
neurophysiologists and knowledge about the human auditory pathway has become
more accurate. A number of studies have been accomplished and a considerable
amount of data has been gathered in order to characterize the responses of nerve fibers
in the eighth nerve of the mammalian auditory system using tone, tone complexes and
synthetic speech stimuli [12-21]. Phonetic features probably correspond in a rather
straightforward manner to the neural discharge pattern with which speech is coded by
the auditory nerve.

Various auditory models which try to physiologically reproduce the human
auditory system have been developed in the past [22], and, even if they must be
considered as only an approximation of physical reality, they appear to be a suitable
system for identifying those aspects of the speech signal that are relevant for automatic
speech analysis and recognition. Furthermore, with these models of auditory
processing, perceptual properties can be re-discovered starting not from the sound
pressure wave, characterising speech, but from a more internal representation which is
intended to represent the true information available at the eighth acoustic nerve of the
human auditory system.



Advanced Auditory Modelling (AM) techniques not only follow "perception-
based" criteria instead of "production-based" ones, but also overcome "short-term"
analysis limitations, because they implicitely retain dynamic and nonlinear speech
characteristics. For example, the dynamics of the response to non-steady-state signals,
as also "forward masking" phenomena, which occur when the response to a particular
sound is diminished as a consequence of a preceeding, usually considerably more
intense signal, are important aspects captured by efficient auditory models[23].
Various evidences can be found in the litterature [24-27] suggesting the use of AM
techniques, instead of more classical ones, in building speech analysis and recognition
systems. Especially when speech is greatly corrupted by noise [27-28], the effective
power of AM techniques seems much more evident than that of classical digital signal
processing schemes.

2. Joint Synchrony/Mean-Rate Auditory Speech Processing.

The computational scheme proposed in this paper for modelling the human
auditory system, apart from small differences regarding the filter bank designing
strategy, refers essentially to the joint Synchrony/Mean-Rate (S/M-R) model of
Auditory Speech Processing (ASP), recently proposed by S. Seneff [23], resulting
from her important studies on this matter [29-31]. The overall system structure, whose
block diagram is illustrated in Fig. 1, includes three stages: the first two deal with
peripheral transformations occurring in the early stages of the hearing process while
the third one attempts to extract information relevant to perception. The first two
blocks represent the periphery of the auditory system. They are designed using
knowledge of the rather well known responses of the corresponding human auditory
stages [20-21]. The third unit attempts to apply a useful processing strategy for the
extraction of important speech properties like an efficient representation for locating
transitions between phonemes useful for speech segmentation, or spectral lines related
to formants useful for phonetic identification.

The speech signal, band-limited and sampled at 16 kHz, is first pre-filtered
through a set of four complex zero pairs to eliminate the very high and very low
frequency components. The signal is then analyzed by the first block, a 40-channel
critical-band linear filter bank. Fig 2 shows the block diagram of the filter bank which
was implemented as a cascade of complex high frequency zero pairs with taps after
each zero pair to individual tuned resonators. Filter resonators consist of a double
complex pole pair corresponding to the filter center frequency (CF) and a double
complex zero pair at half its CF. Although a larger number of channels would provide
superior spatial resolution of the cochlear output, the amount of computation time
required would be increased significantly. The bandwidth of the channels is
approximately 0.5 Bark, which corresponds to the width of one critical band that is a
unit of frequency resolution and energy integration derived from psychophysical
experiments [32]. Filters, whose transfer functions are illustrated in Fig. 3, were
designed in order to optimally fit physiological data like those observed by  N.Y.S.
Kiang et al. [21]. Frequencies and bandwidths for zeros and poles of each filter were



designed almost automatically by an interactive technique developed by S. Seneff and
described in her Thesis [30]. As for the mathematical implementation of the 40-
channnel critical-band filter bank, it is described on the top of Fig. 4, where serial
(FIR) and parallel (IIR) branches are illustrated in detail.

Fig. 1. Block diagram of the joint Synchrony/Mean-Rate model of Auditory Speech Processing.
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Fig. 2. Block diagram of the 40-channel critical-band linear filter bank.

Fig. 3. Transfer Functions of the 40-channel critical-band linear filter bank.
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Fig. 4. Mathematical framework of the joint Synchrony/Mean-Rate model of Auditory Speech
Processing.
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The second stage of the model is called the hair cell synapse model (see Fig.
1). It is nonlinear and is intended to capture prominent features of the transformation
from basilar membrane vibration, represented by the outputs of the filter bank, to
probabilistic response properties of auditory nerve fibers. The outputs of this stage, in
accordance with S. Seneff [23], represent the probability of firing as a function of time
for a set of similar fibers acting as a group. Four different neural mechanisms are
modeled in this nonlinear stage. A half-wave rectifier is applied to the signal in order
to simulate the high level distinct directional sensitivity present in the inner hair cell
current response. This rectifier is the first component of this stage and is implemented
by the use of a saturating non linearity. The istantaneous discharge rate of auditory-
nerve fibers is often significantly highest during the first part of acoustic stimulation
and decreases thereafter, until it reaches a steady-state level. The short-term
adaptation module, which controls the dynamics of this response to non steady-state
signals which is due to the neurotransmitter release in the synaptic region between the
inner hair cell and its connected nerve fibers, is simulated by the so called "membrane
model", which was conceived following the work by R.S. Goldor [33]. This model
influences the evolution of the neurotransmitter concentration inside the cell
membrane. The third unit implements the observed gradual loss of synchrony in nerve
fiber behaviour as stimulus frequency is increased, and it is implemented by a simple
low-pass filter. The last unit is called Rapid Adaptation and implements the very rapid
initial decay in discharge rate of auditory nerve-fibers occurring immediately after
acoustic stimulation onset, followed by the slower decay, due to short-term adaptation,
to a steady state level. This module performs "Automatic Gain Control" and is
essentialy inspired by the refractory property of auditory  nerve fibers [34]. The final
output of this stage is affected by the ordering of the four different components due to
their nonlinear behaviour. Consequently, as underlined by S. Seneff [23], each module
is positioned by considering its hypothesized corresponding auditory apparatus (see
Fig. 1). As for the mathematical implementation of the four modules of the hair-cell
synapse model, this is illustrated in  the central block of Fig. 4. Fig. 5 describes the
result of the application of the model to a simple 1000Hz sinusoid. Left and right plots
refer respectively to the global 60ms stimulus and to its corrsponding first 10ms
window in different positions along the model.

The third and last stage of the model, mathematically described on the
bottom of Fig. 4, is formed by the union of two parallel blocks: the Envelope Detector
(ED), implemented by a simple low-pass filter, which, in accordance with S. Seneff
[23], by smoothing and downsampling the second stage outputs, appears to be an
excellent representation for locating transition between phonemes, thus providing an
adequate basis for phonetic segmentation, and the Synchrony Detector (SD), whose
block diagram as applied to each channel is shown in Figure 6, which implements the
known "phase locking" property of the nerve fibers. This block enhances spectral
peaks due to vocal tract resonances. In fact, auditory nerve fibers tend to fire in a
"phase-locked" way responding to low frequency periodic stimuli, which means that
the intervals between nerve fibers tend to be integral multiples of the stimulus period.
Consequently, if there is a "dominant periodicity" (a prominent peak in the frequency
domain) in the signal, with the so called Generalized Synchrony Detector (GSD)
processing technique [29-30], only those channels whose central frequencies are



closest to that periodicity will have a more prominent response. The use of GSD
parameters allow to produce spectra with a limited number of well defined spectral
lines and this represents a good use of speech knowledge according to which formants
are voiced sound parameters with low variance.

Fig. 5. Result of the application of the four modules implementing the hair-cell synapse model
to a simple 1000Hz sinusoid. Left and right plots refer to the global 60ms stimulus and to its
corrsponding first 10ms window, in different positions along the model.
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Fig. 6. Block diagram of the Generalized Synchrony Detector (GSD) module.

In Fig. 7, an example of the output of the model, as applied to the English
sentence ’Susan ca(n’t)’ uttered in a clean (on the left) and in a noisy (on the right)
environment by a female speaker [27] (last two consonants are omitted), is illustrated
for the envelope (b) and the synchrony (c) detector module respectively. In (a),
manual segmentation made by an Italian mother-tongue phonetician is superimposed
to the speech waveform. Plots on the right of the figure refer to the noisy case when
the sentence is highly corrupted by a superimposed natural noise [27] The
effectiveness of using this model is quite evident from a comparison between the two
sonogram-like plots produced by the GSD (c). Observing the low frequency
components it is evident that the formant structure is well preserved even if speech is
greatly corrupted by quite a relevant noise.

The computation time of the joint S/M-R model of ASP is about 150 times
real-time on a SUN 4/280. The system structure is suitable for parallelization with
special purpose architectures and accelerator chips. At the present time the model has
been also implemented on a floating-point Digital Signal Processor and the obtained
computation time is about 10 times real-time [35].
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Fig. 7. Output of the model, as applied to the English sentence ’Susan ca(n’t)’ uttered in a clean
(on the left) and in a noisy (on the right) environment by a female speaker (last two consonants
are omitted). In (a), manual segmentation made by an Italian mother-tongue phonetician is
superimposed to the speech waveform. (b) and (c) represent the ED and SD spectrogram-like
plot respectively. Noisy sentence has been created starting from the clean one by superimposing
natural speech noise.

3. Auditory Modelling and Speech Segmentation.

The joint S/M-R model of Auditory Speech Processing provides an adequate
basis both for phonetic segmentation and for phonetic labelling or identification. In
fact, the envelope detector module, which smooths second stage outputs, well
preserves dynamic features of input speech thus allowing to discover transitions
between phonemes very precisely and efficiently, while the synchrony detector,
producing spectra with a limited number of well defined spectral lines, provides a
useful representation for identifing different sounds.



In order to determine the location of onset and offset events corresponding to
different phonemes of input speech, two viewpoints are essentially considered. The
first one is that these events represent a local maximum or minimum in some
parameter representing the speech signal, since at these points the signal is undergoing
significantly more change than in the neighboring environment. As for the second
viewpoint, to which the segmentation algorithm considered in this work belongs,
speech is considered as a temporal sequence of quasi-stationary acoustic segments,
and the points within such segments are more similar to each other than to the points
in adjacent segments. The segmentation problem can thus be simply reduced to a local
clustering problem where the decision to be taken regards the similarity of any
particular frame with the sound immediatly preceeding or following it. Furthermore,
using only relative measures of acoustic similarity, this technique should be quite
independent of the speaker, vocabulary, and background noise.

The semi-automatic segmentation algorithm briefly summarised in the
following has been developed by J.R. Glass and V.W. Zue [36-38] and is called Multi
Level Segmentation (MLS) algorithm. The present implementation is based entirely on
both ED and SD parameters while, in its original formulation, only ED parameters are
used.

For each target frame, within its left and right window of ∆ frames lenght (∆
can be set to different values), an average value for each analysis vector component is
computed. Depending on an euclidean-based similarity measure, forward and
backward distances between the current frame and the right and left window are
calculated and a decision is taken in associating the current frame to its immediate
past or to its immediate future. Various strategies can be adopted in defining forward
and backward distances allowing the possibility of adapting the sensitivity of the
association to the local environment [38]. After all frames have been analyzed various
adjacent regions are created. These initial ’seed regions’ constitute the basis for the
following ’hierarchical structuring’ segmentation procedure suggested by the fact that
the speech signal is characterized by short events that are often quite distinct from
their local environment. This hierarchical technique, incorporating some kind of
temporal constraint, is quite useful in order to appropriately rank the significance of
acoustic events. The clustering scheme utilized to produce a multi-level description of
the speech signal is based essentially on the same framework used for locating ’seed
acoustic events’. In fact, starting from previously calculated initial ’seed regions’, each
region is associated with either its left or right neighbor using an euclidean-based
similarity measure, where the similarity measure is computed with a distance measure
applied to the average spectral analysis vector of each region. Two regions are merged
together to form a single region when they associate with each other and this new
created region subsequently associates itself with one of its neighbors. The process is
repeated until the whole utterance is analysed and described by a single acoustic
event. By keeping track of the distance at which two regions merge into one, a multi-
level description usually called dendrogram, like that described in Fig. 8 referring to
the Italian sentence ’Che senso ha.....?’ (What does it mean.....?) can be constructed.



Fig. 8. Multi-level segmentation tree (’Dendrogram’) built on auditory speech representation for
the Italian sentence. ’Che senso ha.....?’ (What does it mean.....?)

The final target segmentation can be extracted automatically [24] by
appropriate pattern recognition techniques whose aim is to find the optimal
segmentation path given the dendrogram structure and the target phonemic
transcription of the input sentence, but also with minimal human intervention, which is
limited exclusively on fixing the vertical point determining the final target
segmentation (corresponding to that found on the horizontal line built on this point),
and eventually deleting over-segmentation landmarks forced by this choice. Even
using the above described manual intervention, segmentation marks are always
automatically positioned by the system and never adjusted by hand.

Advantages of using auditory models vs classical "short-term" analysis
approaches for automatic speech segmentation have been shown in litterature [36-38],
especially in adverse conditions [27]. A graphic example of the output produced by
the application of this algorithm with two different input signal representations to the
same noisy English sentence considered in Figures 7 is illustrated in Fig. 9. The same
algorithm, applied to a "FFT-based spectrogram" (Fig. 9b) and to the "AM-based" one
(Fig 9a), produces a more confusable segmentation "dendrogram" in the first case,
from which the final target segmentation is much more difficult to extract.

Even if speech is clearly degraded by quite a relevant noise, ASP parameters
lead MLS algorithm to compute very clear and reliable segmentation landmarks,
while, on the contrary, FFT parameters cause serious problems in finding a possible
segmentation line throughout the dendrogram structure. In other words, over-
segmentation marks (gross errors), always produced by the use of FFT parameters, are
totally or heavily reduced by the use of ASP parameters. This result leads obviously to
a better starting point for building a real automatic segmentation system [24]. In fact,



walking through the "dendrogram" from left to right, in order to automatically find the
optimal segmentation path, clean multi-level structures would surely be more useful
than very complicate ones.

The MLS system has been incorporated in CASPAR, an automatic
transcription and alignment system developed at MIT [39-40] which has been used
also for the transcription alignment of the TIMIT database produced by the DARPA
consortium. In a formal evaluation of TIMIT automatic alignment, the boundary
locations produced by the system agree well with those produced by human
transcribers. For example, over 75% of the automatically generated boundaries are
within 10 ms of a boundary entered by trained phoneticians [41]. Other speech semi-
automatic segmentation experiments, both in clean and noisy conditions, [27] have
shown more than 90% agreement between semi-automatic and human positioned
landmarks.

As for the computation complexity of the MLS algorithm, considering the
fact that it does not make use of the entire utterance for emitting segmentation
hypothesis but it shows a local behaviour, it is capable of analysing speech signal
virtually istantaneously.

Fig. 9. Comparison of "dendrograms" produced by the application of the MLS algorithm to the
English noisy sentence "Susan ca(n’t)" (last two consonants are omitted), using AM parameters
(a) and FFT parameters (b).



4. Auditory Modelling and Speech Recognition.

As already underlined, various evidences [24-28], suggest the effectiveness
of ASP techniques for speech analysis and recognition, especially in speech adverse
conditions [27-28]. Results of the application of this model in previous recognition
experiments [25] have been compared with those obtained by using a classical FFT-
based front-end. In that particular case, a vowel identification task, the use of AM
parameters has shown better recognition performance than the use of classical FFT-
based coefficients. Moreover, in that experiment a combination of Seneff’s Auditory
Modelling technique and multi-layer neural networks gives rise to an effective
generalization among speakers in coding vowels.

Furthermore, considering an extremely difficult Italian phonetic recognition
problem [26], the automatic discrimination of the so called Italian i-set (/bi/, /tSi/, /di/,
/dZi/, /i/, /pi/, /ti/, /vi/), plus other two i-like stimuli /Li/, /si/ (see SAMPA Phonetic
Alphabet [42]), the achieved speaker independent mean recognition rate is around
65% which, given the effective difficulty of the task, can be considered quite
acceptable and promising. In this experiment using Recurrent Neural Networks (RNN)
as the global recognition framework, input speech signal is sampled at 16kHz, in a
quiet office room, it is analyzed with the joint S/M-R model of ASP in order to
produce adequate speech signal representation, and successively segmented using the
MLS algorithm in order to locate onset and offset of target stimuli. In Fig. 10 a block-
diagram of the whole system used in [26] is described.

Fig. 10. Block diagram of the speech recognition system described in [26] (see text).
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More studies are needed to reinforce the conclusion that the proposed
perception-based auditory analysis could perform better than other acoustic
production-based front-end (LPC, MEL-scale cepstrum, etc. ...) in speech recognition
tasks.

5. Conclusions

In this work a few evidences in favour of using Auditory Modelling tecniques
instead of more classical production-based ones (FFT, LPC, Cepstrum, ets...) in
Speech Processing technology are summarized

Auditory Modelling is still a young research field. Further knowledge on
human auditory functioning has been acquired during last years and surely more
discovering will be made in the future. When it will be possible to easily incorporate
all this knowledge into effective real-time Digital Speech Processing algorithms
perhaps speaker independent speech recognition could become a reality.
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