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ABSTRACT

A timbre classification system based on auditory processing and Kohonen self organizing

neural networks is described. Preliminary results are given on a simple classification experiment

involving 12 instruments in both clean and degraded conditions.

INTRODUCTION

Timbre is a sound feature which can be hardly analyzed in physical and in mathematical

terms due to its dependency on a great number of parameters. The aim of this work is to reduce timbre

multidimensionality in order to obtain a simple and accurate tool for timbre classification starting

from sound signals. In his classical work, J. Grey  (1977) determined a three-dimensional (3D) space

in which different instrument sounds were mapped. This space was produced by applying

multidimensional scaling to subjective similarity judgments between the timbres of 16 traditional

instruments. The interpretation of the coordinates explained the main factors affecting timbre

discrimination.  The first dimension can be interpreted as spectral distribution of the energy, the

second dimension as the presence of synchronicity in the attack stage through the harmonics and the

third is connected with the presence of high frequency inharmonic noise with low amplitude, during

the attack segment. This space cannot be used directly to classify timbres. In fact the classification of a

new timbre requires the repetition of all the psychoacoustic experiments with listening groups. Wessel

(1979) proposed a method to compute the brightness of a sound starting from its spectrum and showed



that brightness is correlated with the principal axis of the timbre space. However no method is

presently available to compute the coordinates of a timbre in the other dimensions. The determination

of the best parameters to classify timbres is still an open problem.  In (DePoli & Tonella,1993; De Poli

et al., 1993) we tried to classify timbres with the Grey parameters throughout 3D Kohonen maps.

Feiten (1992) pre-processed the spectrum by a simplified ear model before training a Kohonen map

for timbre spatialization. Leman(1991, 1992) employed an ear model and Kohonen map in order to

realize a good ear-brain combination as ontological foundation to musicology.

Similarly to speech analysis, Fourier analysis in combination with filter-bank techniques or

cepstrum analysis have been used for many years in order to reduce timbre representation complexity.

Recently, in speech analysis and recognition, the introduction of auditory models (Cooke et al., 1993)

which explicitly consider non-linear phenomena occurring in the perception mechanism, has given

promising results especially when speech is highly degraded by noise (Hunt & Levebvre, 1988). On

the other hand, Neural Networks (NN) (Rumelhart & McClelland, 1986) have already proved their

classification capability in various pattern recognition tasks. For these reasons, in the timbre

classification system being considered, auditory modelling and neural network techniques are

combined together. In particular S. Seneff's auditory modelling (Seneff, 1988) was used in the

analysis stage, while a bidimensional Kohonen Self Organizing Map (SOM) (Kohonen, 1984, 1990)

was used in the classification stage.

AUDITORY MODELLING MOTIVATIONS

Every sound classification and recognition task is preceded by an acoustic analysis front-end,

aiming to extract significant parameters from the time signal.  Normally, this analysis is based on a

model of the signal or of the production mechanism.  Short-Time Fourier Transform (STFT),

Cepstrum, and other related schemes (Rabiner & Shafer, 1978) were all developed strictly considering

physical phenomena that characterise the speech waveform and  are based on the quasi-periodic

model of the signal. On the other hand LPC technique and all its variants were developed directly by

modelling the human speech production mechanism. Even the most simple physical models of

musical instruments are highly non linear; thus they are not suitable to be used for analysis purpose.

In music research and speech recognition the focus is on perceived sound rather than on physical

properties of the signal or of the production mechanism. To this purpose, lately, almost all these

analysis schemes have been modified by incorporating, at least at a very general stage, various

perceptual-related phenomena. Linear prediction on a warped frequency scale  STFT-derived auditory

models, perceptually based linear predictive analysis, are a few simple examples of how human

auditory perceptual behaviour is now taken into account while designing new signal representation

algorithms. Furthermore, the most significant example of attempting to improve acoustic front-end



with perceptual related knowledge, is given by the Mel-frequency cepstrum analysis of speech (Davies

& Mermelstein, 1980), which transforms the linear frequency domain into a logarithmic one

resembling that of human auditory sensation of tone height. In fact, Mel Frequency Cepstrum

Coefficients (MFCC) are almost universally used in the speech community to build acoustic front-end

for Automatic Speech Recognition (ASR) systems.

All these sound processing schemes make use of the "short-time" analysis framework

(Rabiner & Shafer, 1978). Short segments of sounds are isolated and processed as if they were short

segments from a sustained sound with fixed properties. In order to better track dynamical changes of

sound properties, these short segments which are called analysis frames, overlap one another. This

framework is based on the underlying assumption that, due to the mechanical characteristics of the

generator, the properties of the signal change relatively slowly with time. Even if overlapped analysis

windows are used, important fine dynamic characteristics of the signal are discarded. Just for that

reason, but without solving completely the problem of correctly taking into account the dynamic

properties of speech, "velocity"-type parameters (simple differences among parameters of successive

frames) and "acceleration"-type parameters (differences of differences) (Furui, 1986) have been

recently included in acoustic front end of almost all commercialized ASR systems. The use of these

temporal changes in speech spectral representation (i.e. ∆MFCC, ∆∆MFCC) has given rise to one of

the greatest improvements in ASR systems.

Moreover, in order to overcome the resolution limitation of the STFT (due to the fact that

once the analysis window has been chosen , the time frequency resolution is fixed over the entire

time-frequency plane, since the same window is used at all frequencies), a new technique called

Wavelet Transform (WT), characterized by the capability of implementing multiresolution analysis,

has been recently introduced (Kronland-Martinet & Grossmann, 1991). With this new processing

scheme, if the analysis is viewed as a filter bank, the time resolution increases with the central

frequency of the analysis filters. In other words, different analysis windows are simultaneously

considered in order to more closely simulate the frequency response of the human cochlea. As with

the preceding processing schemes, this new auditory-based technique, even if it is surely more

adequate than STFT analysis to represent a model of human auditory processing, it is still based on a

mathematical framework built around a transformation of the signal, from which it tries directly to

extrapolate a more realistic perceptual behaviour .

Cochlear transformations of acoustic signals result in an auditory neural firing pattern

significantly different from the spectral pattern obtained from the waveform by using one of the above

mentioned techniques. In other words,  spectral representations such as the spectrogram, a popular

time-frequency-energy representation of speech, or either the wavelet spectrogram, or scalogram,

obtained using the above described multiresolution analysis technique are quite different from the true

neurogram. In recent years, basilar membrane, inner cell and nerve fiber behaviour have been

extensively studied by auditory physiologists and  neurophysiologists and knowledge about the human

auditory pathway has become more accurate. A number of studies have been accomplished and a



considerable amount of data has been gathered in order to characterize the responses of nerve fibers in

the eighth nerve of the mammalian auditory system using tone, tone complexes and synthetic speech

stimuli. Phonetic features probably correspond in a rather straightforward manner to the neural

discharge pattern with which speech is coded by the auditory nerve.

Various auditory models which try to physiologically reproduce the human auditory system

have been developed in the past (Greenberg, 1988), and, even if they must be considered only as an

approximation of physical reality, they appear to be a suitable system for identifying those aspects of

the acoustic signal that are relevant for automatic speech analysis and recognition. Furthermore, with

these models of auditory processing, perceptual properties can be re-discovered starting not from the

sound pressure wave, but from a more internal representation which is intended to represent the true

information available at the eighth acoustic nerve of the human auditory system.

Advanced Auditory Modelling (AM) techniques not only include "perception-based" criteria

instead of "production-based" ones, but also overcome "short-term" analysis limitations, because they

implicitly retain dynamic and non-linear sound characteristics. For example, the dynamics of the

response to non-steady-state signals, as also "forward masking" phenomena, which occur when the

response to a particular sound is diminished as a consequence of a preceding, usually considerably

more intense signal, are important aspects captured by efficient auditory models (Seneff, 1988).

Various evidences can be found in the literature (Zue et al., 1989; Cosi et al., 1990) suggesting the use

of AM techniques, instead of the more classical ones, in building speech analysis and recognition

systems. Especially when speech is greatly corrupted by noise (Cosi, 1993), the effective power of AM

techniques seems much more evident than that of classical digital signal processing schemes.

AUDITORY PROCESSING

The computational scheme proposed in this paper for modelling the human auditory system,

apart from small differences regarding the filter bank designing strategy, refers essentially to the joint

Synchrony/Mean-Rate (S/M-R) model of Auditory Speech Processing (ASP), recently proposed by S.

Seneff (1988), resulting from her important studies on this matter (Seneff, 1984, 1985, 1986). The

overall system structure, whose block diagram is illustrated in Fig. 1, includes three stages: the first

two deal with peripheral transformations occurring in the early stages of the hearing process while the

third one attempts to extract information relevant to perception. The first two blocks represent the

periphery of the auditory system. They are designed using knowledge of the rather well known

responses of the corresponding human auditory stages (Kiang et al., 1965; Sinex & Geisler, 1983).

The third unit attempts to apply an effective processing strategy for the extraction of important speech

properties like an efficient representation for locating transitions between phonemes useful for speech

segmentation, or spectral lines related to formants useful for phoneme identification.



The signal, band-limited and sampled at 16 kHz, is first pre-filtered through a set of four

complex zero pairs to eliminate the very high and very low frequency components. The signal is then

analyzed by the first block, a 40-channel critical-band linear filter bank. Fig 2 shows the block

diagram of the filter bank which was implemented as a cascade of complex high frequency zero pairs

with taps after each zero pair to individual tuned resonators. Filter resonators consist of a double

complex pole pair corresponding to the filter center frequency (CF) and a double complex zero pair at

half its CF. Although a larger number of channels would provide superior spatial resolution of the

cochlear output, the amount of computation time required would be increased significantly. The

bandwidth of the channels is approximately 0.5 Bark, which corresponds to the width of one critical

band, that is, a unit of frequency resolution and energy integration derived from psychophysical

experiments (Zwicker & Terhardt, 1990). Filters, whose transfer functions are illustrated in Fig. 3,

were designed in order to optimally fit physiological data like those observed by  N.Y.S. Kiang et al.

(1965). Frequencies and bandwidths for zeros and poles of each filter were designed almost

automatically by an interactive technique developed by S. Seneff and described in her Thesis (Seneff,

1985). As for the mathematical implementation of the 40-channel critical-band filter bank, it is

described on the top of Fig. 4, where serial (FIR) and parallel (IIR) branches are illustrated in detail.

< insert Fig. 1 >

< insert Fig. 2 >

< insert Fig. 3 >

< insert Fig. 4 >

The second stage of the model is called the hair cell synapse model (see Fig. 1). It is non-

linear and is intended to capture prominent features of the transformation from basilar membrane

vibration, represented by the outputs of the filter bank, to probabilistic response properties of auditory

nerve fibers. The outputs of this stage, in accordance with S. Seneff (1988), represent the probability

of firing as a function of time for a set of similar fibers acting as a group. Four different neural

mechanisms are modelled in this non-linear stage. A half-wave rectifier is applied to the signal in

order to simulate the high level distinct directional sensitivity present in the inner hair cell current

response. This rectifier is the first component of this stage and is implemented by the use of a

saturating non linearity. The instantaneous discharge rate of auditory-nerve fibers is often

significantly higher during the first part of acoustic stimulation and decreases thereafter, until it

reaches a steady-state level. The short-term adaptation module, which controls the dynamics of this

response to non steady-state signals which is due to the neurotransmitter release in the synaptic region

between the inner hair cell and its connected nerve fibers, is simulated by the so called "membrane



model", which was conceived following the work by R.S. Goldor (1985). This model influences the

evolution of the neurotransmitter concentration inside the cell membrane. The third unit implements

the observed gradual loss of synchrony in the nerve fiber behaviour as the stimulus frequency is

increased, and it is implemented by a simple low-pass filter. The last unit is called Rapid Adaptation

and implements the very rapid initial decay in discharge rate of auditory nerve-fibers occurring

immediately after acoustic stimulation onset, followed by the slower decay, due to short-term

adaptation, to a steady state level. This module performs "Automatic Gain Control" and is essentially

inspired by the refractory property of auditory  nerve fibers (Swami & Swami, 1983). The final output

of this stage is affected by the ordering of the four different components due to their non-linear

behaviour. Consequently, as underlined by S. Seneff (1988), each module is positioned by considering

its hypothesized corresponding auditory apparatus (see Fig. 1). As for the mathematical

implementation of the four modules of the hair-cell synapse model, this is illustrated in  the central

block of Fig. 4. Fig. 5 describes the result of the application of the model to a simple 1000 Hz

sinusoid. Left and right plots refer respectively to the global 60 ms stimulus and to its corresponding

first 10 ms window in different positions along the model.

The third and last stage of the model, mathematically described on the bottom of Fig. 4, is

formed by the union of two parallel blocks: the Envelope Detector (ED), implemented by a simple

low-pass filter, which, in accordance with S. Seneff (1988), by smoothing and down sampling the

second stage outputs, appears to be an excellent representation for locating transitions between

phonemes, thus providing an adequate basis for phonetic segmentation, and the Synchrony Detector

(SD), whose block diagram as applied to each channel is shown in Figure 6, which implements the

known "phase locking" property of the nerve fibers. This block enhances spectral peaks due to vocal

tract resonances. In fact, auditory nerve fibers tend to fire in a "phase-locked" way responding to low

frequency periodic stimuli, which means that the intervals between nerve fibers tend to be integral

multiples of the stimulus period. Consequently, if there is a "dominant periodicity" (a prominent peak

in the frequency domain) in the signal, with the so called Generalized Synchrony Detector (GSD)

processing technique (Seneff, 1984, 1985), only those channels whose central frequencies are closest

to that periodicity will have a more prominent response.

< insert Fig. 5 >

< insert Fig. 6 >

In Fig. 7, an example of the output of the model, as applied to a clean BClarinet sound is

illustrated for the envelope (a) and the synchrony (b) detector module respectively. The use of the

GSD parameters (Fig. 7b) allowed to produce spectra with a limited number of well defined spectral

lines and this represents a good use of sound knowledge according to which harmonics are sound

parameters with low variance. Due to the high level of overlapping of filter responses, envelope



parameters (Fig. 7a) seem less important for classification purposes but maintain their usefulness in

capturing very rapid changes in the signal. Thus they should be more significant considering transient

sounds instead of sustained ones.

< insert Fig. 7a & 7b >

In order to prove the robustness of auditory parameters, the same BClarinet sound with

gaussian random noise superimposed at a level of 5 dB S/N ratio was analyzed. It is evident, from a

comparison between Figures 8a and 8b that the harmonic structure is well preserved by the GSD

parameters, even if the sound is greatly corrupted by quite a relevant noise. Figure 9 shows, in time

domain,  the great difference of a portion of the signal in the clean and noisy conditions.

< insert Fig. 8a & 8b >

< insert Fig. 9 >

The computation time of the joint S/M-R model of ASP is about 100 times real-time on a

SUN SparcStation. The system structure is suitable for parallelization with special purpose

architectures and accelerator chips. At the present time the model has been also implemented on a

floating-point Digital Signal Processor and the obtained computation time is about 10 times real-time

(Cosi et al., 1991).

SELF ORGANIZING MAP

Due to its topology-preserving feature and also to its pattern-matching capability a

bidimensional Kohonen SOM was chosen for the classification stage. The topology-preserving feature

of SOMs let a multidimensional space, in which a particular stationary probability function p(x) is

defined, be represented as a two-dimensional or even three-dimensional image, by using minimum

variance similarity criteria between space vectors thus giving rise to excitatory or inhibitory

interactions between the different nodes of the map. In other words in the SOM, the number of nodes

or neurons is substantially lower than the number of vectors used for training the map. In fact, each

node represents a cluster of the input space, in the sense that each vector of that cluster excites always

the same neuron. On the other hand, considering the pattern-matching ability of the SOM, the ratio

between nodes and vectors is reversed, thus leading to a better classification capability and, at the

same time, to a higher level of 'energy continuity' among excited neurons. In other words, the map is

able to generalize similarity criteria even to vectors not utilized during the training phase. The net

topology can be chosen following certain criteria originally proposed by Kohonen. A rectangular



topology seems to be the best, considering the orientation of the vectors or weights of the network

versus the vectors to be classified during the learning phase. As for the weight initialization phase, an

algorithm extracting the first two dominant eigenvectors within the space of vectors being considered

was used and, successively, all the weights were initialized with a random combination of such

vectors. This should lead to start the learning phase in a very effective position in order to better reach

the convergence of the algorithm.

EXPERIMENT

A limited set of sound samples played by classical musical instruments, representative of the

timbre range of a typical orchestra, was utilized for the classification experiment. The CD Library of

McGill University was utilized in order to extract the following target sound samples:

Timbre CodeName McGill reference

Alto Trombone (ATrbne) CD   #2 McGill

B Clarinet (B flat) (BClrto) CD   #2 McGill

Tumpet (B) (BTrump) CD   #2 McGill

Flute C (no vibrato) (CFluteNV) CD   #9 McGill

Violoncello (no vibrato) (CelloNV) CD   #9 McGill

France Horn (FHorn) CD   #2 McGill

Oboe (Oboe) CD   #2 McGill

Pipe Organ (POrgan) CD #10 McGill

Piano HamburgSteinway (Piano) CD   #9 McGill

Tenor Sax (TSax) CD   #3 McGill

Violin (no vibrato) (ViolinNV) CD   #9 McGill

Viola (no vibrato) (VlaNV) CD   #9 McGill

Following the original Grey experiment, timbres were selected with pitch C4 (C fourth octave)

corresponding to 261.6 Hz. This note belongs to the pitch range of all considered instruments. The

signal was sampled with 16 bits at a sampling frequency of 32 KHz and successively undersampled at

16 KHz by software. The reason of this undersampling was due to the fact that the Seneff auditory

processing, and in particular the filter-bank stage, was developed for speech signal sampled at 16

KHz. In the experiment being described this corresponds to use up to 30 harmonics for each sound.



The introduced quality loss is not dramatic in our classification task because the significant harmonics

are sufficiently represented. According to Grey's psychoacustic finding, temporal characteristics of the

attack seem to retain most of the information for timbre discrimination. Thus only 300 ms for each

sound, corresponding to the attack and a small sustained phase, were selected.  As illustrated in Fig.

2, GSD parameters retain relevant spectral information while envelope parameters seem less suitable

for a classification task and consequently they were not used to train and test the network. In a first

experiment each filter-bank channel was sampled every 5 ms giving rise to 2400 data for each item

(300 ms / 5 ms x 40 channels).  The SOM was designed considering a value less than 30% for the

ratio of weight_vector dimension and the total number of nodes of the network. A rectangular

structure was chosen with 36x24 nodes leading to a network of 864 nodes. Due to the high complexity

of such a structure, classification results could be considered satisfactory only after a very long

training phase. For such a reason, a second experiment was set up in which, while maintaining the

same  network complexity, input data were strongly simplified. Following neurophysiological

findings, neurons, after a pulse was fired, have a latency period of 1-3 ms in which no more pulses

can be fired. Thus the firing sequences of a single neuron can be synchronised to the input signal if

and only if the input sound frequency is less than 1 KHz. With higher frequencies, while single

neurons cannot retain their siynchronization property, on the contrary, groups of adjacent neurons can

still be synchronized with the input sound waveform if a mean firing rate is considered for that group.

However, over 4-5 KHz, the synchronization property is completely lost even in a mean sense. In the

Seneff auditory model this phenomenon is captured by the "synchrony reduction" module, as indicated

in Fig. 1, which is essentially implemented by a low pass-filter. Following these considerations only

the first 20 channels of the auditory model were considered spanning a frequency band ranging from

130 to 1300 Hz. Instead of using all 300 ms sampled every 5 ms for each input timbre, only 3 vectors

corresponding to the minimum, the mean and the maximum value of the corresponding GSD

parameters were considered, leading to a total of 60 elements for each item. The discrimination power

of  the SOM in this experiment was considerably reduced, and, for example, very dynamic timbres

such as Piano and Sax, were often confused. A third experiment was finally designed in which,

instead of considering only 3 vectors relating to minimum, mean and maximum GSD parameters, as

in the second experiment, a total of 6 vectors obtained for each item by sampling, independently of

GSD parameters, every 50 ms the complete 300 ms duration, were used to train and test the network.

The same frequency range of the previous experiment (130-1300 Hz, 20 channels) and the same SOM

structure were considered. As already underlined, the network weights were initialized with a linear

combination of the first two dominant autovectors of the input pattern space. Learning was divided in

two phases: a first general training phase and a fine-adjustment phase. The aim of the first phase is to

substantially order the map of neurons while the aim of the second one is to continuously improve and

refine the discrimination power of the network.

The following formulas rule the learning algorithm:



where m in (1) represents the map weights learning function at step t+1, x represents the input vector

and hc represents the excitation function which remains constant at step t for the whole excitation

near space set defined by Nc(t). The only limitation given for α is that it shall be continuously

decaying in time in order to grant for the learning algorithm to converge and it is selected such that 0

< α(t) <1. Typically α(t) decays to zero after a preselected number of training set presentations.  The

exact decay schedule is not critical, but Kohonen has noted that the convergence of the algorithm

consists of the following two distinct phases: initial formation of map order and final convergence.

The learning phase is usually chosen as a piece wise linear decay with the second phase lasting 10 to

100 times longer than the first phase. The same decaying characteristic applies to the near space set

function Nc and in particular a linear decaying function was chosen. In fact, starting from an initial

radium of action Nco the near space function linearly reduces, step by step, to 1 which represents the

adjacent set of neurons. Considering, as usual, the same alpha for each node of the map, the only

adjustable parameters during the learning phase are: Nco, hco and the learning time or the number of

iterations.

Following these considerations, a high value of hco, relatively to that assigned in the second

phase, and a value for Nco equal to half the diagonal of the map were set in order to obtain a rapid

ordering of the vector of weights during the first learning iterations while letting the SOM to

simultaneously maintain its high level of generalization capability. Usually this phase does not require

a great number of iterations, and, in this experiment, we stopped after 1000 iterations.  In the second

fine-adjusting phase, the excitation function shall be lower both in intensity and in radium of action in

order to obtain a better refining and calibration of the map built in the first phase, thus improving its

classification power within the input space vectors without reducing its generalization feature. In

particular a low value is chosen for hc0 and half the value of the previous phase is chosen for Nco.

The number of iterations for this phase, as indicated above, shall be quite high and the chosen value

was 5000.

RESULTS
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In the following table the various parameters used while training the network are

summarized and, in particular, in the fifth column, the quantization errors per sample in both phases

are indicated.

Phase hco Nco N. of iterations QError/sample

1 0.3 20 1000 0.199824

2 0.08 10 5000 0.000016

Figure 10 illustrates a typical answer map (BClarinet) of the self organizing network

showing the different excitation values (Z axis) of its nodes. The image shown in Fig. 11 illustrates,

all twelve overlapped excitation planes, computed over a fixed threshold corresponding to 95% of the

global dynamic excitation range. Each instrument was clustered in a single region of the map which

contains also the input best-matching pattern. All twelve instruments can be quite well distinguished

by the map. Moreover, the map is interestingly organized from a topological point of view. In fact,

information is coded by the map in a way satisfying certain human mental criteria of timbre

classification in space. For example, neurons corresponding to wind instruments and those

corresponding to string ones are contiguous in the map. Moreover, Piano and Pipe Organ are not

arranged in any of these two categories. In conclusion, auditory modelling and Kohonen self

organizing map lead us to obtain a bidimensional representation of timbre space.

< insert Figure 10 >

< insert Figure 11 >

In order to consider the real classification capability of the obtained SOM, a test experiment

was set up with two different aims. The first one was intended to test the recognition capability of the

network with samples of the same instruments used during training but coming from a different

source, while, the second was intended to verify the generalization capability of the network if used to

classify different instruments from those used for the learning phase. Test samples were the following:

Timbre CodeName Reference

E Clarinet (EClarinet) CD #2 McGill



Bachian Trumpet (BhTpt) CD #2 McGill

Bass Clarinet (BassClrto) CD #2 McGill

Tenor Trombone (TTrbne) CD #2 McGill

English Horn (EHorn) S3 G.E.M. synt.

Oboe2 (Oboe2) S3 G.E.M. synt.

Baritone Sax (BSax) CD #3 McGill

Comparing Fig. 10 and Fig. 12, referring to the answer of the network to BClarinet (learning) and

EClarinet (test) and Fig. 13a and Fig. 13b relative to BTrumpet (learning) and Bachian Trumpet (test)

it is worth noticing the high level of similarity in the answer maps.

< insert Figure 12 >

< insert Figures 13a & 13b >

Moreover, stimulating the network with a new timbre, sensibly different from those used for learning,

produces an activation of a neuronic area located near that excited by the most similar training timbre.

This similarity is not only a numerical property of the describing parameters but is also verified by

listening to the timbres. In the case of the Tenor Trombone, the best-match answer, shown in Figure

14, was in the middle between the best-match of the BTrumpet and that of the Alto Trombone. By

listening to these two instruments, the interpolating answer spontaneously given by the network,

among the two learning timbres and the target test one, can be strongly appreciated.

< insert Figure 14 >

In Speech Technology, auditory modelling techniques have already shown their superiority

versus more classical ones principally when speech is greatly corrupted by noise (Cosi, 1993). In order

to verify the robustness of the proposed auditory recognition set of parameters for timbre

classification, the complete system was tested with some instruments previously utilized while

training the network corrupted by zero-mean gaussian noise at various SNR levels. In Fig. 15 the

answer map of the network is shown for the BClarinet with 0 db SRN noise. This map is very similar

to the response of the clean tone shown in Fig. 10. Both in the processing phase and in the parameter

synthesis phase a great tolerance to the noise can be observed granting to this kind of analysis a high

level of competitivity with respect to other more classical analysis techniques like Fourier Analysis,

Cepstrum, Lpc etc.... . In Fig. 16 it is possible to appreciate differences between the parameter

representing the clean BClarinet set and the noisy (0 db SRN noise level) one. The SOM further

reduces this difference and correctly recognizes the timbre.



< insert Figure 15 >

< insert Figure 16 >

CONCLUSIONS

These results are obviously not extendible to all instruments, principally due to the fact that

the present learning data-set was rather limited to be statistically significant. However, they are

sufficient to demonstrate the usefulness of the chosen approach in order to find a possible definition of

an hypothetical timbrical space. To reach this goal, a more complete learning set of instruments will

be taken into consideration in the near future.
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CAPTIONS TO THE FIGURES



Fig. 1. Block diagram of the joint Synchrony/Mean-Rate model of Auditory Speech Processing.

Fig. 2. Block diagram of the 40-channel critical-band linear filter bank.

Fig. 3. Frequency responses of the 40-channel critical-band linear filter bank.

Fig. 4. Mathematical framework of the joint Synchrony/Mean-Rate model of Auditory Speech

Processing.

Fig. 5. Result of the application of the four modules implementing the hair-cell synapse model to a

simple 1000 Hz sinusoid. Left and right plots refer to the global 60 ms stimulus and to its

corresponding first 10 ms window, in different positions along the model.

Fig. 6. Block diagram of the Generalized Synchrony Detector (GSD) module.

Fig. 7. Output of the model, as applied to a clean B Clarinet sound: (a) envelope, (b) synchrony.

Fig. 8. Synchrony parameter output of the analysis of the same B Clarinet of Fig 7b, superinposed

with a gaussian random noise at a level of 5 db S/N ratio.

Fig. 9 Time domain representation of a portion of the B Clarinet signal in (a) clean and (b) noisy

conditions (5 db SNR).

Fig. 10. Answer map of the SOM to the B Clarinet stimulus.

Fig. 11. Resulting map. The regions identify the timbres and are computed over a fixed threshold

corresponding to 95% of the global dynamic excitation range.

Fig 12. Answer of the map to the E Clarinet test timbre, to be compared with fig. 10.

Fig. 13. Answer of the map to: (a) B Trumpet (learning timbre); (b) Bachian Trumpet (test timbre).

Fig. 14. Activation map of Alto Trombone test timbre. The best match answer is in the middle

between the best-match of B Trumpet and Tenor Trombone.

Fig 15 Answer map of the B Clarinet timbre corrupted with noise at 0 db SNR level.



Fig. 16. Comparison of the parameters representing BClarinet timbre in clean and noisy conditions.

Six equally spaced samples from synchrony output of each channel are successively shown along the

X axis.


