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Abstract. The vowel sub-component of a speaker-independent phoneme classification system will be described. The archi-
tecture of the vowel classifier is based on an ear model followed by a set of Multi-Layered Neural Networks (MLNN).
MLNNs are trained to learn how to recognize articulatory features like the place of articulation and the manner of articu-
iation related to tongue position.

Experiments are performed on 10 English vowels showing a recognition rate higher than 95% on new speakers. When
features are used for recognition, comparable results are obtained for vowels and diphthongs not used for training and
pronounced by new speakers. This suggests that MLNNs suitably fed by the data computed by an ear model have good
generalization capabilities over new speakers and new sounds.

Zusmmmenfassung. Beschrieben wird eine Klassifizierungsstufe fiir Vokale als Teil eines sprecherunabhiingigen Pho-
nemklassifizierungssystems. Die Architektur dieses Vokaiklassifikators basiert auf einem Ohrmodell, das von einem Satz
mehrschichtiger neuronaler Netze gefolgt wird. Diesc neuronalen Netze werden darauf trainiert, artikulatorische Merkmale,
wie z.B. den Ort der Artikulation oder die Art der Artikulation — bezogen auf die Position der Zunge — zu erkennen,
Experimente mit 13 englischen Vokalen ergeben eine Erkennungsrate vor mehy als 95% fiit neve, dem System bisher
unbekannte Sprecher. Werden phonetische Merkmale fir die Erkennung herangezogen, so tassen sich vergleichbare Resul-
tate fiir solche Vokale und Diphthonge erreichen, die fiir das Training nicht verwendet ader von neuen Sprechern gedufert
wurden. Dies legt nahe, daBb mehrschichtige neuronale Netze, auf passende Weise mit den Ausgangsdaten eines Ohrmodells
angesteuert, sich bei der Erweiterung dieser Aufgabe auf neue Sprecher oder neue Laute als gut geeignet erweisen,

Résumé, Nous présentons un systéme de classification de phoneémes indépendant du locuteur et appliqué aux voyelles.
L’architecture du classificateur de voyelles est basée sur un modéle d’oreille suivi d'un ensemble de réseaux neuronaux a
plusicurs couches (MELNN). Les MLNNs apprennent & reconnaitre les traits articulatoires, par exempie le lieu et le mode
d’articulation en relation avec la position de la langue.

Des expériences ont été effectuées sur 10 voyelles anglaises et montrent un taux de reconnaissance supérieur & 95% sur
de nouveaux locuteuss. Lorsque les traits sont utilisés pour la reconnaissance, des résultats comparables sont obtenus pour
des voyelles et des diphtongues qui n'ont pas €té utilisées lors de Papprentissage et prononcées par de nouveaux Jocuteurs,
Ceci suggere que, pour des données calculées par un modele d’oreille, les MLNNs présentent un bon pouvoir de géaérali-
sation pour de nouveaux locuteurs et de nouveaux sons,

Keywords. Speaker independent system, classification, recognition, multi-layered neural networks, articutatory features,
vowels, car modei,

1. Intreduciion

In order to capture robust speech properties
useful for coding speech for Automatic Speech
Recognition {ASR) and characteristic of a large

population of speakers, a Multi-Layered Neural
Network (MLNN) system, specialized on phone-
tic feature hypothesisation, was proposed (Bengio
et al., 1989).

The main motivation for such an approach was
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that perceptually significant features, even if they
possibly exhibit great differences in the space of
acoustic parameters, exhibit small distortions in a
perceptual space whose dimensions and metrics
are not a-priori known and are difficult to specify.

Decision functions which have to describe the
existence of phonetic properties in speech mnfer-
vals can be learned by examples rather than being
defined by properly conceived algorithms.

MLNNs are networks with an input layer of
nodes, one or more hidden layers and an output
layer whose nodes Tepresent a coded version of
the input. Nodes are connected by links. Weights
are associated to links. All the links bringing a
signal into a node contribute to the calculation of
the excitation of that node. The excitation is the
sum of the product of the weights of each link and
the value of the output coming from the node
from which the link carries its signal. The output
of a node is a function of the node excitation. By
choosing the link weights a large variety of clas-
sifiers can be designed having specific properties.
Link weights can be obtained by a learning pro-
cess. Learning can be supervised or unsupervised.
When learning is supervised, the network input is
fed by sets of patterns. Each set corresponds to a
class of patterns that bave to be coded with the
same values appearing at the output nodes. The
output nodes are clamped with the desired values
and algorithms exist for computing the values of
the link weights in such a way that the network
codes the sets of input patterns as desired. These
learning algorithms have a relevant generalization
capability.

Recently, a large number of scientists are in-
vestigating and applying learning systems based
on MLNNs. Definitions of MLNNs, motivations
and algorithms for their use can be found in
Rumelhart et al. (1986); Plaut and Hinton (1987);
Hinton and Sejnowski (1986). Theoretical results
have shown that MLNNs can perform a variety of
complex functions (Plaut and Hinton, 1987). Ap-
plications have also shown that MLNNs have in-
‘teresting generalization performances capable of
capturing information related to pattern struc-
tures as well as characterization of parameter var-
jation {Bourlard and Wellekens, 1987; Watrous
and Shastri, 1987). Algorithms exist for MLNNs
with proven mathematical properties that allow
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learning to be competitive and to focus on the
properties that make different patterns belonging
to different classes. Furthermore, in MLNNs the
knowledge about a set of competing classes (in
our case Speech Units or phonemes) is distributed
in the weights associated to the links between
nodes.

If we interpret each output of the classifier as
representing a phonetic property, then an output
value can be seen as a degree of evidence with
which that property has been observed in the
data.

Two important research problems can be
studied with such an approach. The first problem
investigates the possibility of learning the features
of each phoneme only in some phonetic contexts
and rely on the generalization capability of a net-
work for generating correct hypotheses about
phonemes in contexts that have not been used for
learning. The second problem is similar to the
first one but deals with the possibility of learning’
all the required features and using them for cor-
rectly hypothesizing phonemes that have not been
used for learning. As for the second problem it is
necessary to code the output with some features
in order to learn features and to represent each
class (phoneme or speech unit) as a combination
of features.

In this paper we focused only on the speaker
independent vowel classification problem, thus
the system being described has to be viewed as
the vowel-specific sub-component of the more
complete architecture initially mentioned (Bengio
et al., 1989), whose final aim was to globally solve
the speaker independent phoneme iecognition
problem.

For the vowel classification problem we have
chosen as main features the place of articulation
and the manner of articulation related to tongue
position. The reason is that these features are well
characterized by physical parameters that can be
measured or estimated. Phoneticians have charac-
terized vowels and other sounds by discretizing
place of articalation and manner of articulation.
related to tongue position, which are in nature
continuous acoustic parameters. We have infer-
red an MLNN for each feature and we have dis-.
cretized each feature with five qualitative values, '
namely PLy, ..., PL;, ..., PLs for the place and
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MN;y, ..., MN;, ..., MN; for the manner. We have
used ten vowels pronounced by many speakers in
a fixed context for training the two networks,
each vowel being represented by one of the PL;
and one of the MN,. In order to describe all the
vowels of American English with enough redun-
dancy, we have introduced another network with
two outputs, namely T = tense and L = lax. We
have also inferred the weights of a network with
ten outputs, one for each vowel. The perfor-
mances of this network have shown that it is pos-
sible to obtain an excellent generalization of the
parameters when training is performed on a limit-
ed number of male and female speakers using
data that make evident acoustic properties having
little variance across speakers when the same voc-
alic sound is pronounced. The performances of
this network have also been used as reference.

Tests have always been performed with new
speakers. The first test consists in pronouncing
the same vowels in the same context as in the
data used for learning. This test is usefui for com-
paring the results obtained with a mathematical
model of the ear (Seneff, 1984; 1985; 1986; 1988)
with those obtained with the more popular Fast-
Fourier Transformation (FFT). This test is also
wseful for assessing the capabilities of the network
learning method in generalizing knowledge about
acoustic properties of speakers pronouncing vow-
els. The second test has the objective of recogniz-
ing vowels through features. This test has been
useful for investigating the power of the networks
with respect to possible confusions with vowels
not used for learning. The third experiment con-
sists in attempting to recognize new vowels pro-
noanced by new speakers in order to investigate
the capability of the networks to detect the same
features used for learning, but integrated into
sounds that were not used for learning. This
generalization capability was verified with 8 new
sounds pronounced by 20 new speakers. Without
any learning on the new sounds, but just using
expectations based on phonetic knowledge on the
composing features and their time evolutions, an
error rate of 7.5% was found.

Section 2 describes the details of the ear
model. Section 3 describes the details of an
MLNN trained for the speaker-independent rec-
ognition of 10 English vowels. Section 4 describes

the details of the recognition experiments. Sec-
tion S describes new networks trained to learn
articulatory properties and their performances in
the speaker-independent recognition of vowels
and diphthongs not used for learning.

2. The ear modei

Cochlear transformations of speech signals re-
sult in an auditory neural firing pattern signific-
antly different from the spectrogram, a popular
time-frequency-energy representation of speech.

In recent years basilar membrane, inner cell
and nerve fiber behaviour have been extensively
studied by auditory physiologists and knowledge
about the human auditory pathway has become
more accurate. A number of studies have been
accomplished and a considerable amount of data
has been gathered in order to characterize the
responses of nerve fibers in the eighth nerve of
the mammalian auditory system using tone, tone
compiexes and synthetic speech stimuli {Delgutte,
1980, Delgutte and Kiang, 1984a, b, ¢, d; Young
and Sachs, 1979; Sachs and Young, 1980; Miller
and Sachs, 1983; Sinex and Geisler, 1983; Kiang
et al., 1965}.

Phonetic features probably correspond in a
rather straightforward manner to the neural dis-
charge pattern with which speech is coded by the
auditory nerve. For these reasons, even an ear
model that is just an aproximation of physical re-
ality appears to be a suitable system for identify-
ing those aspects of the speech signal that are
relevant for recognition,

The computational scheme proposed in this
paper for modelling the human auditory system is
derived from the one proposed by Seneff (1984;
1985; 1986; 1988). The overall system structure
which is illustrated in Fig. 1 includes three blocks:
the first two of them deal with peripheral transfor-
mations occurring in the early stages of the hear-
ing process, while the third one attempts to ex-
tract information relevant to perception. The first
two blocks represent the periphery of the hearing
system. They are designed using knowiedge of the
rather well-known responses of the corresponding
human auditory stages (Sinex and Geisler, 1983;
Kiang et al., 1965). The third unit attempts to
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Fig. 1. Block-diagram of the ear model.
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apply a useful processing strategy for the extrac-
tion of important speech properties like spectral
lines related to formants (Seneff, 1984; 1985).

The speech signal, band-limited and sampled
at 16 kHz, is first pre-filtered through a set of
four complex zero pairs to eliminate the very high
and very low frequency components. The signal
is then analyzed by the first block, a 40-channel
critical-band linear filter bank. Fig. 2 shows the
block diagram of the filter bank which was im-
plemented as a cascade of complex high fre-
quency zero pairs with taps after each zero pair
to individual tuned resonators, Filter resonators
consist of a double complex pole pair correspond-
ing to the filter center frequency (CF) and a dou-
ble complex zero pair at half its CF. Filters, whose
transfer functions are ilfustrated in Fig. 3, were
designed in order to optimally fit physiological
data like those observed by Kiang et al. (1965).
Frequencies and bandwidths for zeros and poles
of each filter were designed almost automatically
by an interactive technique developed by Seneff
and described in her thesis (1983).

The second block of the model, whose block
diagram is shown in Fig. 4, is called the hair cell
synapse model, it is nonlinear and is intended to
capture prominent features of the transformation
from basilar membrane vibration, represented by
the outputs of the filter bank, to probabilistic re-
sponse properties of auditory nerve fibers, The
outputs of this stage, in accordance with Seneff
(1988), represent the probability of firing as a
function of time for a set of similar fibers acting
as a group.

Four different neural mechanisms are modeled
in this nonlinear stage (Seneff, 1988). The trans-
fer function of a transduction module which half-
wave rectifies its input is shown in Fig. 5. The
rectifier is applied to the signal in order to simu-
late the high level distinct directional sensitivity
present in the inner hair cell current response.
The short-term adaptation which seems due to
the neurotransmitter release in the synaptic re-
gion between the inner hair cell and its connected
nerve fibers is simulated by the so-called “mem-
brane model”, which was conceived following the
work by Goldor (1985). The mathematical equa-
tions describing the mechanism which influences
the evolution of the newrotransmitter concentra-
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tion inside the cell membrane are given in Fig. 6.
The third unit represents the observed gradual
loss of synchrony in nerve fiber behaviour as
stimulus frequency is increased and it is im-
plemented by a simple low-pass filter. The last
unit is called “Rapid Adaptation”. It performs
“Automatic Gain Control” and implements a
model of the refractory phenomenon of nerve fib-
ers.

The thitd and last block of the ear model is the

synchrony detector, which implements the known
“phase locking” property of the nerve fibers. It
enhances spectral peaks due to vocal tract reso-
nances. Auditory nerve fibers tend to fire in a
“phase-locked” way responding to low frequency
periodic stimuli, which means that the intervals
between nerve fibers tend to be integral multiples
of the stimulus period. Consequently, if there is
a “dominant periodicity” (a prominent peak in
the frequency domain) in the signal, with the so
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called Generalized Synchrony Detector (GSD)
processing technique (Seneff, 1984; 1985), only
those channels whose central frequencies are
closest to that periodicity will have a more prom-
inent response. The block diagram of the GSD,
as applied to each channel is shown in Fig. 7.

3. Speaker-independent recognition of ten vowels
in fixed contexts

A first experiment was performed for speaker-
independent vowel recognition. The experimental
environment is described in Fig. 8. The purpose
was that of training an MLNN capable of discrimi-
nating among 10 different American-English
vowels represented with the ARPABET by the
following VSET:

VSET: {iy, ih, ¢h, ae, ah, uw, uh, ao, aa, er}
(1)

The interest was to investigate the generaliza-
tion capability of the network with respect to in-
ter-speaker variabifity. Some vowels (ix, ax, ey,
ay, oy, aw, ow) were not used in this experiment
because we attempted to recognize them through
features learned by using only VSET.

Transduction Module
( Half-Wave Rectifying Model)

Speeck Communication

Fig. 5. Transduction module.
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Speech material consisted of 5 pronunciations
of ten monosyllabic words containing the vowels
of VSET. The words used are those belonging to
the WSET defined in the following:

WSET: {BEEP, PIT, BED, BAT, BUT, BOOT,
PUT, SAW, FAR, FUR} (2)

The signal processing method used for this expe-
riment is the one described in the previous Sec-
tion. The output of the Generalised Synchrony
Detector (GSD) was collected every 5 ms and re-
presented by a 40-coefficients vector. This type of
output is supposed to retain most of the relevant
speech spectral information.

The GSD output of the vocalic part of the sig-
nal was sent to an MLNN. The performances of
an MLNN depend on its architecture, on the
method used for learning and for producing an
output but also on the type of input and the way
the output is coded. In order to capture the essen-
tial information of each vowel it was decided to
use 10 equally-spaced frames per vowel for a total
of 400 network input nodes. A single hidden layer
was used with a total of 20 nodes. Ten output

Firing Probability

| GSD

I Genevallzed Synchreny Drlcclnr!

&
it o

Saturating Half-wave

Synchrony Spectrum

Fig. 7. Generalized Synchrony Detector {(GSD} module.

nodes were introduced, one for each vowel as
shown in Fig. 9.

Vowels were automatically singled out by an
algorithm proposed in De Mort et al. (1985), and
a linear interpolation procedure was used to re-
duce to 10 the variable number of frames per
vowel (the first and the last 20 ms of the vowel
segment were not considered in the interpolation
procedure). The resulting 400 (40 spectral coeffi-
cients per frame x 10 frames) spectral coefficients
became the inputs of the MLNN,

The Irror Back Propagation Algorithm
{(EBPA) was used for training. EBPA was re-
cently introduced (Rumelhart et al., 1986) for a
class of non-linear MLLNNs. These networks are
made of connected units. The networks used for
the experiments described in this paper are feed-
forward (non-recurrent) and organized in layers.
A weight is associated to each of the (unidirec-
tional) connection between two nodes. Input
nodes are on layer O and have no input connec-
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Fig. 8. Bxperimental cnvironment for vowel recognition.

tions. Output nodes have no output connections
and are on the last layer. Nodes which are neither
input nor output units are called hidden units.
The network computes a non-linear function
from the input units to the output units. The ar-
chitecture of the network determines which func-
tions it can compute. A typical architecture used
in the experiments described in this paper is
shown in Fig. 9. The nodes of the network com-
pute a sigmoid function of the weighted sum of
their inputs. Any output value takes values be-
tween 0 and 1 according to the following function:

. I

Yf=f(Z YW) ®)
=1

with:

fxy = 1/ (1 +exp(—x)). 4

The sum in {3) is over the J units with an out-
going connection to unit i, the output value of
this unit is Y,. The weight W, is associated with
the link between the output of unit i and the input
of unit j.

With EBPA the weights are computed itera-
tively in such a way that the network minimizes a
square error measure defined over a set of train-
ing input/output examples. These examples be-
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Fig. 9. Structure of the neural network used for vowel recog-
nition,

long to a training set defined as follows:

K
training sef = [ U (IN,, OUTk)} , (5
k=1

where IN, is an input pattern and OUT, is a de-
sired output pattern that can be represented by
the following vector of values: (OUT,;, OUTy,,
..., OUTy,). The minimized square error mea-
sure is:

X M

E=O.5*(Z Y (OUTy, -

k=1m=1

Y.NE) . ©

where k varies over the training set of examples
and m varies over the M nodes on the oufput
layer. Y, {IN;)} is the value of the mth output node
computed by the MLNN when IN, is applied at
the input layer.

EBPA uses gradient descent in the space of
weights to minimize E. The basic rule for updat-
ing link weights is:

AW = — learning_ rate * OE/SGW, (7

where SE/QW can be computed by back-propagat-
ing the error from the output units as described
in Rumelhart et al. (1986).

In order to reduce the training time and accel-
erate learning, various techniques can be used.
The classical gradient descent procedure modifies
the weights after all the examples have been pre-
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sented to the network, This is called batch learn-
ing. However, it was experimentally found, at
least for pattern recognition applications, that it
is much more convenient to perform on-line
learning, i.e. updating the weights after the pre-
sentation of each example. Batch learning pro-
vides an accurate measure of the performance of
the network as well as of the gradient 3E/CW.
These two parameters can be used to adapt the
learning rate during training in order to minimize
the number of training iterations. In our experi-
ments we used various types of acceleration
techniques. The most effective one consisted in
switching from on-line learning to batch learning
and vice-versa, depending on the behaviour of the
gradient and the evolution of performances.

In contrast with classical Hidden Markov Mod-
els, where output probabilities are maximized in-
dependently for each class, MLNNs can learn
from presentations of examples from all the clas-
ses that have to be recognized with the possibility
of emphasizing what makes classes different and
different examples of the same class similar.

The voices of 13 speakers (7 male, 6 female)
were used for learning with 5 samples per vowel
per speaker. The voices of seven new speakers (3
male, 4 female) were used for recognition with 5
samples per vowel per speaker. Speech material
was recorded in a guiet office room and data ac-
quisition was performed with a 12 bits A/D con-
verter at 16 kHz sampling frequency. Learning
was accomplished with about 60 training cycles
with zero error rate on the training set. As for the

Table 1

test set the network produces degrees of evidence
varying between zero and one, candidate hypo-
theses could be ranked according to the corre-
sponding degree of evidence.

The confusion matrix represented in Table 1
was obtained. In 95.7% of the cases, correct
hypotheses were generated with the highest evi-
dence, in 98.5% of the cases correct hypotheses
were found in the top two candidates and in
99.4% of the cases in the top three candidates.
Similar results were obtained by repeating the ex-
periments with different starting random weight
configurations. These results were compared with
those obtained by performing the same experi-
ment, in the same experimental conditions as de-
scribed in Figs. 8 and 9, but using a more classical
acoustic front-end. By using 40 coefficients pro-
duced by an FFT-based mel-scale 40-channel fil-
ter bank instead of using data from the ear model,
the recognition rate was about 87% showing a
9% significant reduction. In this particular task
the use of the ear model coefficients showed bet-
ter recognition performance than the use of clas-
sical FFT-based coefficients. Moreover further
evidence needs to be provided (e.g. using other
classical acoustic parameters like LPC coefficients
or mel-scale cepstrum coetfficients) in order to
conclusively prove that the proposed perception-
based auditory analysis in general performs better
than other acoustic production-based front-end
for automatic speech recognition. The use of the
ear model allowed to produce spectra with a lim-
ited number of well-defined spectral lines. This

Performance of the vowel recognition system using the entire vocalic segment
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Table 2
Vowel representation using phonefic features

P. Cosi et al. | Phonetically-based MLNNs

Place of articulation

Back Central Front
PL; PL, Pi; PL, PLs

fac/ BAT
feh/ BED
/iy/ BEEP
faw!/ BOOT
fah/ BUT
/aal FAR
fer/ FUR
fin/ PIT
fub/ PUT
fao/ SAW
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Manner of articulation

Low Mid High Law  Tense
MN; MN, MN; MN, MN; L T
i 0 0 0 & 0 %
90 1 & 0 Y i 0
9 0 G 0 1 0 1
G 0 v 0 1 G 1
G 1 0 0 0 1 0
1 G 0 0 0 0 1
0 0 1 0 0 0 1
0 Q 0 i 0 1 0
0 0 0 i 0 1 0
1 0 0 0 0 1 0

0 0 1 0

)
[)
—

represents a good use of speech knowledge ac-
cording to which formants are vowel parameters
with low variance. The use of male and female
voices allowed the network to perform an excel-
lent generalization with samples from a limited
number of speakers.

Encouraged by the results of this first experi-
ment, other problems appeared worth investigat-
ing with the proposed approach. The problems
are all related to the possibilities of extending
what has been learned for ten vowels to recognize
new vowels, An appealing generalization possibil-
ity relies on the recognition of vowel features. By
learning a set of features in a set of vowels, new
vowels can be characterized just by different com-
bination of the learned features. Features like the
place of articulation and the manner of articula-
tion related to tongue position are good descrip-
tors of the vowel generation system. It can be
expected that their values have low variance when
different speakers pronounce the same vowel.

4. The recognition of phonetic features

The same procedure introduced in the previous
section was used for learning three networks, na-
mely MLNNV,, MLNNV, and MLNNV;. These

networks have the same structure as the one in-
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troduced in the previous section with the only dif-
ference that they have more outputs. MLNNV,
has five additional outputs corresponding to the
five places of articulation PL,, ..., PL;, ..., PLs.
MLNNV, has five new outputs, namely MNy, ...,
MN;, ..., MNs. MLNNV, has two additional out-
puts, namely T = tense and L = lax. The ten
vowels used for this experiment have the features

‘defined in Table 2.

After having learned the weights of the three
networks, the outputs corresponding to the indivi-
dual vowels were ignored and confusion matrices
were derived only for the outputs correspond-
ing to the phonetic features. An error corres-
ponds to the fact that an output has a degree of
evidence higher than the degree of the output cor-
responding to the feature possessed by the vowel
whose pattern has been applied at the mput.

The confusion matrix for the features is shown
in Table 3. The overall error rates are 4.6%,5.7%
and 5.4% respectively for the three sets of fea-
tures. As in the case of speaker-independent re-
cognition of ten vowels in fixed contexts previous-
1y described, similar results were obtained repeat-
ing the present experiments with different star-
ting random weight configurations. Error rates
were always zero after a number of training cycles
{(between 60 and 70) of the three networks, Seve-
ral rules can be conceived for recognizing vowels
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Table 3
Performances in the recognition of features

Pronounced features Place of articulation

Back Central Front

PL, PL, P, PL, PL,

BAT 1 0 0 34 i
BED 0 0 g 35 |
BEEP 0 0 0 it 35
BOOT 0 32 0 3 0
BUT a G 30 5 0
FAR 34 G 1 0 a
FUR a 2 29 4 0
PIT 0 G g 35 0
PUT 0 35 0 0 0

35 o 0 0 0

SAW

Manner of articulation

Low Mid High Lax Tense
MN, MN, MN, MN, MN;, L T
35 & 0 0 0 0 35

Q 35 0 0 0 35 G
0 0 0 0 35 0 35
0 0 0 1 34 2 33
8 27 ¢ 0 G 32 3
35 9 & 0 0 8 27
1 1 31 2 G { 35
0 U G 35 0 35 0
0 2 0 33 4 33 2
5 0 0 0 31 4

[#3)
Lo

through their features. The most severe rule is
that a vowel is recognized if all the three features
have been scored with the highest evidence. With
such a rule, 313 out of 350 vowels are correctly
recognized corresponding to 89.4% recognition
rate.

In 28 cases, combinations of features having
the highest score did not correspond to any vowel,
so a decision criterion had to be introduced in
order to generate the best vocalic hypothesis. It
is important to consider as an error the case in
which the features of a vowel not contained in the
set defined by (1) receive the highest score. Con-
sidering these vowels as well as the vowels in (1)
an error rate of 2.6% was found. This leads to the
conclusions that an error rate between 2.6% and
10.6% can be obtained depending on the decision
criterion used for those cases for which the set of
features having the highest membership in each
network do not correspond to any vowel.

An appealing criterion consists in computing
the centers of gravities of the place and manner
of articulation using the following relation:

5 5

CG = (Z i,u(i—i))/ Youi—1) . (8)
i=1 i=1

Let CGP and CGM be respectively the center

of gravity of the place and manner of articulation,

A degree of “tenseness™ has been computed by

dividing the membership of “tense” by the sum of

the memberships of “tense” and “lax”. Each sam-
ple can now be represented as a point in a three-
dimensional space having CGP, CGM and the de-
gree of tenseness as dimensions. Euclidean dis-
tances are computed for those sets of features not
corresponding to any vowel with respect to the
points representing theoretical values for each
vowel. With centers of gravity and Euclidean dis-
tance an error rate of 7.2% was obtained.

Another interesting criterion consists in intro-
ducing a subjective probability for a feature de-
fined as the ratio of the feature membership over
the sum of the memberships of the other features,
For example for feature PL; a probability a; is
defined as follows:

5
m=®LY ({3 uPL)) ©)

The probability of a vowel is then defined as
the product of the subjective probabilities of the
features of the vowel. As the denominator of the
probability of a vowel is the same for all the vow-
els, the vowel with the highest probability is the
one with the highest product of the evidences of
its features,

By smoothing each membership with its
neighbours and multiplying the memberships of
the features of each vowel an error rate of 8.8%
was obtained. The error rate obtained with grav-
ity centers is not far from the one obtained in the
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Error Table
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10000 01000 o0100 00601
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[ oooso ]|

00061 |

FUR (1} BUT (1) FAR{1}  BUT(2)

lert fah/

jaal fah!

Fig. 10. Drror tree for the vowels classified with a code that does not correspond to any vowel.

previous section with ten vowels, In this case the
possibility of error was higher because the system
was allowed to recognize feature combinations for
all the vowels of American English.

For those cases for which the features which
reached the maximum evidence did not define a
set corresponding to any vowel of American En-
glish an error analysis was made. The conclusions
of these analyses arc shown by the error tree in
Fig. 10 {nmumber of errors are indicated between
parentheses). They suggest that most of the errors
were systematic (PL, confused with PL, and MN,
confused with MN,).

Based on the tree in Fig. 10, features for
maximum evidence can be used as a code for de-
scribing an unknown vowel, When this code does
not correspond to any acceptable vowel, it can be
mapped into the right one corresponding to the
true features of the vowel when the wrong code
always corresponded to the same vowel. When
the wrong code corresponds to more than one
vowel a procedure is executed that computes Euc-
lidean distances on gravity centers. With this

Speech Communication

criterion, which is derived from the test data, an
error rate of 3.2% can be obtained. This error
rate cannot be used for establishing the perfor-
mances of the feature networks because it cor-
rects some errors by recoding the memberships
using a function that has been learned by analyz-
ing the test data. Nevertheless, it suggests that
feature-based MLNNs may outperform a
straightforward phoneme-based MLNN if succes-
sive refinements are performed using more than
one training set. In fact, after a few experiments,
interpretations for the codes PL = 00001, MN =
(0001 and PL = 01000, MN = 10000 can be infer-
red and applied to successive experiments leading
to a correct recognition rate close to 96%.

5. Recognitior of new vowels and diphthongs

In order to test the generalization power of the
networks for feature hypothesization a new expe-
riment was performed involving 20 new speakers
from 6 different mother tongues (English,
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French, Spanish, Italian, German and Viet-
namese)} pronouncing letters in English.

According to other experimental works on
vowel recognition (Leung and Zue, 1988), there
are 13 vowels in American English and 3 diph-
thongs. The vowels and diphthongs that were not
used in the previous experiments belong to the
NSET;

{/ax/(the}, fey{A), fav/(D), foy/(boy),
faw/(bough), fow/(O)}. (10

The vowel /ax/ does not exhibit transitions in
time of the parameters CGM and CGP so its
recognition was based on the recognition of the
expected features as defined in Table 2. The other
five elements of NSET exhibit evolutions of CGP
and CGM in the time domain. For this reason, it
was decided to use such evolutions as basis for
recognition. Furthermore, the sequences /yu/ and
fway/ (corresponding to the pronunciation of let-
ters U and Y) were added to NSET in order to
have a larger set of classes for testing the genera-
lization capabilities of the system.

Although Hidden Markov Models could be
and will be conceived for modeling time evolution
of centers of gravities, a crude classification crite-
rion was applied in this experiment.

Recognition was purely based on time evolu-
tions of place and manner of articulation accord-
ing to descriptions predictable from theory or past
experience and not learned by actual examples.
The centers of gravities CGP and CGM were
computed every 5 ms and vector-quantized using
five symbols for CGP according to the following
alphabet:

%, = {F, f, C, b, B}. (11)

F represents “strong front”. Analogously, the fol-
lowing alphabet was used for quantizing the man-
ner of articulation:

%, = {H, h, M, I, L}. (12)

M represents “strong high”.

Coding of CGP and CGM is based on values
computed on the data of the ten vowels used for
training the network.

Transitions of CGP and CGM were simply

identified by sequences of pairs of symbols from

X and 2. Fig. 11 gives an example of the time
evolutions of CGP and CGM for letters A (ey)
and Y (way) together with their codes.

The following regular expressions were used
to characterize the words containing the new vow-
els and diphthongs:

A: (t, h)* (F, H)*

I  (b+C D*({+F h+ H?*

O: (b+B,)*(b+B,h+ )

joyl: (B, )* (£ + F, h + H)* (13)

jawl: (C,1)* (b + B, h + H)*

U: (f+Fh+H*®b+B,h+H*

Y: (b+Bh+H*(C1+L*(f+Fh+
H)*.

The asterisk means in theory “any repetition”
but in our case a minimum of two repetitions was
required. The symbol “+ here means logical dis-
junction while a concatenation of terms between
parentheses means a sequence in time. A short
sequence with intermediate symbols was tolerated
in transitions B-F, L.-H, and vice versa.

Tor each new word, twenty samples were avail-
able based on the idea that speaker-independent
recognition has to be tested with data from new
speakers and repetition of data from the same
speaker is not essenfial.

The errors observed were quite systematic. For
fax/, 1 case was confused. with /al/. For /ey/ (letter
A), three errors were observed, all corresponding
to a sequence (f, h)*, meaning that the transition
from /eh/ was not detected. For fow/ (letter Q),
three errors were observed corresponding to the
sequence (b, I}*, meaning that the transition from
foh/ was not detected which may correspond to
an intention of the speaker. Three errors were
found for /oy/ confused with /ay/ and two errors
for /aw/ confused with /ow/. For the other transi-
tions, the expectations were always met. The re-
peatability of the describing strings was remark-
able. A total of 12 errors out of 160 test data was
found corresponding to an error rate of 7.5%.
This provides evidence that a system made of an
ear model followed by MLNNs trained to recog-
nize normalized values of the place and manner
of articulation reliably generates feature hypo-
theses about vowels and diphthongs not used for
training.
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28 P. Cosi et al. | Phonetically-based MLNNs

F H
Place of — - Mannaer of
Articuiation f k Articulation
(=) . - ()

C M
b I

. B (a)
B L

— T T
0 100 300 400
Tlme (ms)
F
Place of - Manner of
Articulation | Articulation
(&) T { =)

C
b

B b
. (b)

M T T T T T
[y 100 200 400 500 6500

Time (ms}

Fig. 11, Time evolution of CGM and CGP.

6. Conclusions

The work reported in this paper shows that a
combination of an ear model and multi-layer
neural networks allows us to obtain an effective
generalization among speakers in coding vowels.
The results obtained in the speaker-independent
recognition of ten vowels add a contribution that
justifies the interest in the investigation of the use
of MLNNs for ASR (Leung and Zue, 1988;
Waibel et al., 1988).

Furthermore, training a set of MLNNs on a
number of well distinguishable vowels allows us
to obtain a very good generalization on new vow-
els and diphthongs if recognition is based on fea-
tures.

By learning how to assign degrees of evidence
to articulatory features it is possible to estimate
normalized values for the place and manner of
articulation which appear to be highly consistent

Speech Communication

with gualitative expectations based on speech
knowledge.

Speech coders that produce degrees of evi-
dence of phonetic features can be used for fast
lexical access, for word spotting, for recognizing
phonemes in new languages with limited training
or for constraining the search for the interpreta-
tion of a sentence.

Effective learning and good generalizations
can be obtained using a limited number of speak-
ers in analogy with what humans do.

Performance models of the time evolutions of
evidences or derived parameters like CGP and
CGM can be made using Hidden Markov Models.
Degrees of evidences can be used as “pseudo-
probabilities”, parameters and evidences can be
vector-quantized or their continuous densities can
be estimated for the models.

The error-back propagation algorithm seems
to be a suitable one for learning weights of inter-
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node links in MLNNs. A better understanding of
the problems related to its convergence is a key
factor for the success of an application. The
choice of the number of MLNNSs, their architec-
ture, the coding of their input and output are also
of great importance, especially for generalization.

The computation time of the system proposed
in this paper is about 130 times real-time on a
SUN 4/280. The system structure is suitable for
parallelization with special purpose architectures
and accelerator chips. It is not unrealistic to ex-
pect that with a suitable architectare, such a sys-
tem could operate in real-time.
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